~

Final Report 0002/A001 ¢ March 20, 1995

OBJECT-ORIENTED DESIGN AND SPECIFICATION

For the period 1 January 1990 through 31 December 1994

José Meseguer, Principal Scientist
Computer Science Laboratory

SRI Project ECU 8844

Prepared for:

Chief of Naval Research
Code 3330/Annual Report
Ballston Tower One

800 North Quincy Street
Arlington, VA 22217-5660

cc: Dr. Ralph Wachter, Scientific Officer

Contract No. N00014-90-C-0086
Approved:

Mark Moriconi, Director
Computer Science Laboratory

‘Donald Nielson, Vice President

Computing and Engineering Sciences Division

DIETRIBUTION STATEMENT K

i mw
e B s &

19951031 022

Object-Oriented Design and Specification

José Meseguer
SRI International, Menlo Park CA 94025

1 Introduction

This final report summarizes the research performed for the Office of Naval
Research under Contract N00014-90-C-0086 on the topic “Object-Oriented
Design and Specification.” The project began on 1 January 1990 and
ended on 31 December 1994. Dr. José Meseguer was the project leader.
Drs. Patrick Lincoln, and Narciso Marti-Oliet and Mr. Timothy Winkler
also worked on the project.

Early in the project, an important breakthrough took place with the
discovery of rewriting logic, which was then further developed [25, 23, 26].
Rewriting logic has proved to be a very flexible multiparadigm logic [27] of
great simplicity allowing the unification of equational programming, Horn
logic programming, object-oriented programming, and concurrent program-
ming. In particular, a very simple semantics can be given in rewriting
logic to concurrent object-oriented programming [24, 29, 28] and to object-
oriented databases [33]. This is particularly encouraging given that concur-
rent object-oriented programming and object-oriented databases are disci-
plines generally considered to lack a precise semantics.

Encouraged by these results, a preliminary language design for Maude,
a wide-spectrum multiparadigm language based on rewriting logic and con-
taining a subset called Simple Maude that can be efficiently compiled onto a
wide variety of parallel machines has been developed (34, 27, 30, 28, 17]; and
very encouraging experience about its suitability for specifying concurrent
systems, Al problems, programming languages, and logics has been gath-
ered [30, 20, 21, 32, 22]. In addition, some initial progress has been made on
transformation and compilation techniques for the Simple Maude parallel

. programming sublanguage [17, 18].

Maude contains the equational language OBJ as its functional sublan-
guage. The OBJ3 system and its underlying theory have been developed ion For
with the support of the Office of Naval Research. OBJ3 is used throughout :rjs1 C
the world in more than 170 universities and research laboratories. Progress .3 a
has been made in further developing OBJ3’s underlying abstract data type .xced O
theory [35, 31], and in improving the OBJ3 user manual [8]. "

1 By
Distq&pution{
Avaliability Codes
Tlavall andfor

Our work on rewriting logic and Maude during this project has stim-
ulated their use by a growing community of international researchers in a
variety of ways. For example, C. Kirchner, H. Kirchner, and Vittek are
using it as a foundation for their ELAN language and applying it to the
specification of computational systems [9, 39, 10]; Futatsugi has adopted it
as the semantic basis of his Cafe language [6]; Denker and Gogolla have used
Maude to give semantics to the TROLL light object-oriented language [5];
Viry has developed useful program transformation techniques for rewrite
theories using completion methods [38]; Laneve and Montanari have shown
how the heavy notation of the residual calculus can be replaced by a simpler
semantic account using rewriting logic [11, 12]; Corradini, Gadducci, and
Montanari have studied its relationships with other categorical models and
with event structures [4], as well as the topic of infinite rewritings [3]; Levy
and Agusti are applying it to their work on automated deduction [16, 14, 15];
Reichel has found it useful in his final coalgebra semantics for objects [36];
Lechner, Lengauer, and Wirsing have carried out an ambitious case study
investigating the expressiveness of rewriting logic and Maude for object-
oriented specification and have explored refinement concepts [13]; Talcott is
using rewriting logic to give a concurrent semantics to actor systems [37];
and applications to Petri net algebraic specification have been developed by
Battiston, Crespi, De Cindio, and Mauri [1], and by Bettaz and Maouche

2]

2 Accomplishments

Under contract N00014-90-0086, we have accomplished the following:

Rewriting Logic. The logical basis on which the main ideas developed in
the project are based is provided by rewriting logic [25, 23, 26], a logic
for reasoning correctly about concurrent systems having states, and
evolving by means of transitions. The signature of a rewrite theory
describes a particular structure for the states of a system—e.g., mul-
tiset, binary tree, etc.—so that its states can be distributed according
to such a structure. The rewrite rules in the theory describe which
elementary local transitions are possible in the distributed state by
concurrent local transformations. The rules of rewriting logic allow
us to reason correctly about which general concurrent transitions are
possible in a system satisfying such a description. Thus, computation-
ally, each rewriting step is a parallel local transition in a concurrent

system.

Alternatively, however, we can adopt a logical viewpoint instead, and
regard the rules of rewriting logic as metarules for correct deduction in
a logical system. Logically, each rewriting step is a logical entailment
in a formal system. This second viewpoint is particularly fruitful when
using rewriting logic as a logical framework [20, 21].

The computational and the logical viewpoints under which rewriting
logic can be interpreted can be summarized in the following diagram
of correspondences:

State +— Term « Proposition
Transition +— Rewriting — Deduction
Distributed Structure « Algebraic Structure <« Propositional Structure

The last row of equivalences is actually quite important. Roughly
speaking, it expresses the fact that a state can be transformed in a
concurrent way only if it is nonatomic, that is, if it is composed out
of smaller state components that can be changed independently. In
rewriting logic this composition of a concurrent state is formalized by
the operations of the signature ¥ of the rewrite theory R that ax-
iomatizes the system. From the logical point of view, such operations
can naturally be regarded as user-definable propositional connectives
stating the particular structure that a given state has. The papers
[26, 22] give further discussion and examples illustrating the above
correspondences between computational and logical concepts.

Semantics of Concurrent Objects and of Object-Oriented Databases.
The naturalness with which concurrent object-oriented programming
can be expressed in rewriting logic and can be unified with equational
programming is particularly encouraging [24, 29, 28]. In a similar way,
object-oriented databases can be given a logical semantics in rewriting
logic {33]. In this way, the serious need for semantic foundations in
these two areas has been satisfactorily met.

In addition, serious difficulties long recognized by many authors in in-
tegrating concurrency and inheritiance in object-oriented languages—
the so-called “inheritance anomaly” problem—have been completely
resolved using rewriting logic [29]; and equational functional program-
ming is cleanly integrated with concurrent object-oriented program-

ming thanks to an embedding of equational logic within rewriting logic
[27].

Preliminary Design of Maude. Rewriting logic is a very simple mul-
tiparadigm logic [27] on which to base a declarative wide-spectrum
language unifying equational programming, Horn logic programming,
object-oriented programming, and concurrent programming. Maude
is our preliminary design for such a language [34, 27, 30, 28, 17]. In
addition to system modules that are theories in rewriting logic, Maude
provides explicit language support for functional modules—essentially
identical to OBJ3 modules—and for object-oriented modules. Maude
can be realized as an interpreter that executes such modules. We can
view the modules executable in Maude as a commonly used subset
of rewriting logic; however, nonexecutable specifications in arbitrary,
finitely presented rewriting logic theories are possible within the lan-
guage using theories, that can specify modules and can give formal
requirements to the parameters of parameterized modules. In this
way, a high-reuse “parameterized programming” methodology similar
to that of OBJ but enjoying additional properties is achieved.

Besides the nonexecutable specification, executable specification, and
rapid prototyping uses supported by Maude, machine-independent
declarative parallel programming is supported in the Simple Maude
subset, which can be efficiently compiled onto a wide variety of parallel
machines. Program transformation techniques can then allow moving
from nonexecutable specifications to executable ones, and from these
to efficient parallel programs [17].

Specification Uses of Maude. Regarding the specificational uses of rewrit-
ing logic, an obvious question to ask is how general and natural rewrit-
ing logic is as a semantic framework in which to express different lan-
guages and models of computation. Our experience in this regard is
quite encouraging. In several papers [26, 20, 28] we have been able to
show that a wide variety of models of computation, including concur-
rent ones, can be naturally and directly expressed as rewrite theories in
rewriting logic without any encoding or artificiality. As a consequence,
models hitherto quite distant from each other can be naturally uni-
fied and interrelated within a common framework. This is particularly
useful in the field of concurrency, where alternative models proposed
as “basic” by different authors differ greatly, and also in attempts at

designing multiparadigm languages such as those combining functional
and concurrent object-oriented programming.

In particular, we have shown that models and languages such as

e CCS,

e Petri nets,

e Actors,

e the UNITY language,

e the lambda calculus,

e equational languages, and

e concurrent object-oriented programming

can all be naturally expressed in rewriting logic. In addition, we have
shown in [22] that rewriting logic has very good properties as a logic of
change that avoids the frame problem, and that subsumes other logics
previously proposed for this purpose.

In addition to all the uses already discussed, rewriting logic has also
very good properties for specifying other logics in it, that is, as a logi-
cal framework [20, 21, 32]. Indeed, rewriting logic seems to have great
flexibility to represent in a natural way many other logics, widely dif-
ferent in nature, including equational, Horn, and linear logics, and
any sequent calculus presentation of a logic under extremely general
assumptions about such a sequent presentation; moreover, quantifiers
can also be treated without problems [20]. More experience in repre-
senting other logics is certainly needed, but we are encouraged by the
naturalness and directness—often preserving the original syntax and
rules—with which the logics that we have studied can be represented.

In summary, our experience with rewriting logic as a logical framework
suggests that it has very good properties for this purpose in terms of:

e Scope. We actually conjecture that any finitely presented logic
(for an adequate formal definition of “finitely presented logic” as
a logic of practical interest) has a conservative representation in
rewriting logic.

e Representational adequacy. The capacity for axiomatizing
the syntactic constructs and structural properties of a logic as an
order-sorted algebraic data type, as well as the rules of the logic

as rewrite rules, seems to make the “distance” between the logic
and its representation negligible or non-existent in many cases.

Up to now, we have obtained faithful representations for:

e equational logic,

Horn logic with equality,

linear logic,

logics with quantifiers, such as first-order classical and linear log-
ics,

any logic describable with a sequent calculus, including first-order
classical, modal, linear, and intuitionistic logics.

Parallel Programming in Maude. We can usefully distinguish three par-
allel computing paradigms that in combination are sufficient for ex-
pressing with naturalness most parallel computing applications. These
paradigms are:

1. Parallel Symbolic Computing. Functional, logic program-
ming, and theorem-proving applications are typical of this paradigm.

2. Highly Regular Data-Parallel Computing. Many scientific
computing applications, as well as cellular automata and systolic
algorithms, are typical of this paradigm.

3. Concurrent Object-Oriented Computing. Many discrete
event simulations, and many distributed AI and database appli-
cations can be naturally expressed and parallelized in this way.

A carefully chosen subset of rewriting logic gives rise to the multi-
paradigm parallel programming language Simple Maude, that is effi-
ciently implementable on a wide range of parallel machines—including
MIMD, SIMD, and SIMD/MIMD machines—and that can directly
support the three paradigms of symbolic, object-oriented, and highly
regular parallel computing. Specifically, Simple Maude supports:

e Parallel Symbolic Computing
by Term Rewriting

o Highly Regular Data-Parallel Computing
by Graph Rewriting

e Concurrent Object-Oriented Computing
by Object-Oriented Rewriting

Much more research is needed, but we have already carried out a pre-
liminary language design for Simple Maude and have developed pro-
gram transformation techniques bringing rewriting logic specifications
into Simple Maude and optimizing Simple Maude programs [17]. In
addition, compilation techniques for SIMD and MIMD/SIMD imple-
mentations and a prototype Simple Maude compiler for the Rewrite
Rule Machine (RRM) [19] have also been developed [18].

Abstract Data Types and OBJ3. Maude contains the equational lan-

guage OBJ as its functional sublanguage. Progress has also been
made on theoretical and practical aspects of OBJ3. Important se-
mantic properties of order-sorted abstract data types that make them
strictly more expressive than many-sorted abstract data types have
been studied in [31]; and computability properties of abstract data
types clarifying their specificational power have been investigated in
[35]. Several revisions and extensions of the OBJ3 user’s manual [7]—
that is over 100 pages long and contains an overview of OBJ3’s seman-
tics, the OBJ3 systems, its parameterized programming methodology,
and many examples—have also been made; and we have continued
distributing the system to universities and research laboratories world-
wide.

References

(1]

(2]

[3]

E. Battiston, V. Crespi, F. De Cindio, and G. Mauri. Semantic frame-
works for a class of modular algebraic nets. In M. Nivat, C. Rattray,
T. Russ, and G. Scollo, editors, Proc. of the 3rd International AMAST
Conference, Workshops in Computing. Springer-Verlag, 1994.

M. Bettaz and M. Maouche. How to specify nondeterminism and true
concurrency with algebraic term nets. In M. Bidoit and C. Choppy, edi-
tors, Recent Trends in Data Type Specification, pages 164-180. Springer
LNCS 655, 1993.

A. Corradini and F. Gadducci. CPO models for infinite term rewriting.
To appear in Proc. AMAST’95.

[4]

[5]

[7]

[10]

[11]

[12]

[13]

A. Corradini, F. Gadducci, and U. Montanari. Relating two categorical
models of term rewriting. To appear in Proc. Rewriting Techniques and
Applications, Kaiserslautern, April, 1995.

Q. Denker and M. Gogolla. Translating TROLL light concepts to
Maude. In H. Ehrig and F. Orejas, editors, Recent Trends in Data Type
Specification, volume 785 of LNCS, pages 173-187. Springer-Verlag,
1994.

K. Futatsugi and T. Sawada. Cafe as an extensible specification en-
vironment. To appear in Proc. of the Kunming International CASE
Symposium, Kunming, China, November, 1994.

J.A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-
CSL-88-9, Computer Science Laboratory, SRI International, August
1988.

Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi,
and Jean-Pierre Jouannaud. Introducing OBJ. Technical Report SRI-
CSL-92-03, SRI International, Computer Science Laboratory, 1994. To
appear in J.A. Goguen, editor, Applications of Algebraic Specification
Using OBJ, Cambridge University Press.

C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic
programming languages using computational systems. In P. van Hen-
tryck and V. Saraswat, editors, Selected Papers from the 1st PPCP
Workshop, 1995. MIT Press, to appear.

H. Kirchner and P.-E. Moreau. Prototyping completion with constraints
using computational systems. To appear in Proc. Rewriting Techniques
and Applications, Kaiserslautern, April, 1995.

C. Laneve and U. Montanari. Axiomatizing permutation equivalence
in the A-calculus. In H. Kirchner and G. Levi, editors, Proc. Third Int.
Conf. on Algebraic and Logic Programming, Volterra, Italy, September
1992, volume 632 of LNCS, pages 350-363. Springer-Verlag, 1992.

C. Laneve and U. Montanari. Axiomatizing permutation equivalence.
Mathematical Structures in Computer Science, 1994. To appear.

U. Lechner, C. Lengauer, and M. Wirsing. An object-oriented airport.
To appear in Proc. Tenth ADT + COMPASS Workshop on Specifica-

8

(14]

[15]

[16]

(18]

[19]

20)
1)

[22]

tion of Abstract Data Types, Santa Margherita Ligure, Italy, May/June
1994, Springer LNCS, 1995.

J. Levy. A higher order unification algorithm for bi-rewriting systems.
In J. Agusti and P. Garcia, editors, Segundo Congreso Programacidn
Declarativa, pages 291-305, Blanes, Spain, September 1993. CSIC.

J. Levy. The calculus of refinements: a formal specification model based
on inclusions. PhD thesis, Universitat Politécnica de Catalunya, 1994.

J. Levy and J. Agusti. Bi-rewriting, a term rewriting technique for
monotonic order relations. In C. Kirchner, editor, Proc. Fifth Int. Conf.
on Rewriting Techniques and Applications, Montreal, Canada, June
1993, volume 690 of LNCS, pages 17-31. Springer-Verlag, 1993.

Patrick Lincoln, Narciso Marti-Oliet, and José Meseguer. Specification,
transformation, and programming of concurrent systems in rewriting
logic. In G.E. Blelloch, K.M. Chandy, and S. Jagannathan, editors,
Specification of Parallel Algorithms, pages 309-339. DIMACS Series,
Vol. 18, American Mathematical Society, 1994.

Patrick Lincoln, Narciso Marti-Oliet, José Meseguer, and Livio Ric-
ciulli. Compiling rewriting onto SIMD and MIMD/SIMD machines.
In Proceedings of PARLE’94, 6th International Conference on Parallel
Architectures and Languages Europe, pages 37-48. Springer LNCS 817,
1994.

Patrick Lincoln, José Meseguer, and Livio Ricciulli. The Rewrite Rule
Machine Node Architecture and its Performance. In Proceedings of
CONPAR’94, Linz, Austria, September 1994, pages 509-520. Springer
LNCS 854, 1994.

Narciso Marti-Oliet and José Meseguer. Rewriting logic as a logical
and semantic framework. Technical Report SRI-CSL-93-05, SRI Inter-

national, Computer Science Laboratory, August 1993.

Narciso Marti-Oliet and José Meseguer. General logics and logical
frameworks. In D. Gabbay, editor, What is a Logical System?, pages
355-392. Oxford University Press, 1994.

Narciso Marti-Oliet and José Meseguer. Action and change in rewriting
logic. In R. Pareschi and B. Fronhoefer, editors, Theoretical Approaches

9

[23]

(24]

[25]

[26]

[27]

31]

to Dynamic Worlds in Computer Science and Artificial Intelligence.
1995. To appear.

José Meseguer. Conditional rewriting logic: deduction, models and con-
currency. In S. Kaplan and M. Okada (eds.) Proc. CTRS’90, Montreal,
Canada, 1990, Springer LNCS 516, pp. 64-91, 1991.

José Meseguer. A logical theory of concurrent objects. In ECOOP-
OOPSLA’90 Conference on Object-Oriented Programming, Ottawa,
Canada, October 1990, pages 101-115. ACM, 1990.

José Meseguer. Rewriting as a unified model of concurrency. In Pro-
ceedings of the Concur’90 Conference, Amsterdam, August 1990, pages
384-400. Springer LNCS 458, 1990.

José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96(1):73-155, 1992.

José Meseguer. Multiparadigm logic programming. In H. Kirchner and
G. Levi, editors, Proc. 3rd Intl. Conf. on Algebraic and Logic Program-
ming, pages 158-200. Springer LNCS 632, 1992.

José Meseguer. A logical theory of concurrent objects and its realiza-
tion in the Maude language. In Gul Agha, Peter Wegner, and Akinori
Yonezawa, editors, Research Directions in Concurrent Object-Oriented
Programming, pages 314-390. MIT Press, 1993.

José Meseguer. Solving the inheritance anomaly in concurrent
object-oriented programming. In Oscar M. Nierstrasz, editor, Proc.
ECOOP’93, pages 220-246. Springer LNCS 707, 1993.

José Meseguer, Kokichi Futatsugi, and Timothy Winkler. Using rewrit-
ing logic to specify, program, integrate, and reuse open concurrent sys-
tems of cooperating agents. In Proceedings of the 1992 International
Symposium on New Models for Software Architecture, Tokyo, Japan,
November 1992, pages 61-106. Research Institute of Software Engi-
neering, 1992.

José Meseguer and Joseph Goguen. Order-sorted algebra solves the
constructor-selector, multiple representation and coercion problems. In-
formation and Computation, 103(1):114-158, 1993.

10

[32]

[33]

[34]

[35]

[36]

37]

(38]

[39]

José Meseguer and Narciso Marti-Oliet. From abstract data types to
logical frameworks. To appear in Proceedings of the 10th Workshop
on Abstract Data Types, Santa Margherita, Italy, June 1994, Springer
LNCS, 1994.

José Meseguer and Xiaolei Qian. A logical semantics for object-oriented
databases. In Proc. International SIGMOD Conference on Management
of Data, pages 89-98. ACM, 1993.

José Meseguer and Timothy Winkler. Parallel programming in Maude.
In J.-P. Banitre and D. Le Metayer, editors, Research Directions in
High-level Parallel Programming Languages, pages 253-293. Springer
LNCS 574, 1992. Also Technical Report SRI-CSL-91-08, SRI Interna-
tional, Computer Science Laboratory, November 1991.

L. Moss, J. Meseguer, and J.A. Goguen. Final algebras, cosemicom-
putable algebras, and degrees of unsolvability. Theoretical Computer
Science, 100:267-302, 1992.

H. Reichel. An approach to object semantics based on terminal co-
algebras. To appear in Mathematical Structures in Computer Science,
1995. Presented at Dagstuhl Seminar on Specification and Semantics,
Schloss Dagstuhl, Germany, May 1993.

C. Talcott. Semantics of component based distributed, open, heteroge-
neous systems. Manuscript, Stanford University, February 1995.

P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis
et al., editors, PARLE’94, Proc. Sizth Int. Conf. on Parallel Architec-
tures and Languages Europe, Athens, Greece, July 1994, volume 817 of
LNCS, pages 648-660. Springer-Verlag, 1994.

M. Vittek. ELAN: Un cadre logique pour le prototypage de langages de
programmation avec contraintes. PhD thesis, Université Henry Poincaré
— Nancy I, 1994.

11

IHREPLY
REFERTO

J(DH) O C?;Q

6

/994

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITICN)

DEFENSE TECHNICAL INFORMATION CENTER
CAMERNON STATION
ALEXANDRIA, VIRGINIA 22304-6145

DTIC-OCC

SUBJECT: Distribulion Stalements on Technical Documentls

OFFICE OF NMAVAL RESEARCH
CORPORNE eROcRANS DIVISION
TO: ONR 353
’ 800 MORTH QUINCY STREET

ARLINGTON, VA 22217 -56C0

1. Relerence: DoD Directive 5230.24, Dislribution Stalements on Tgﬁchnical Documents,
/

18 Mar 87.

[Information Center received the enclosed report (referenced

2. The Delense Technica
d in accordance with the above reference.

below) which is not marke
FINAL REPORT
N00014-90-C-0086
TITLE: OBJECT ORIENTED DESIGN
AND SPECIFICATION

3. We réddesl the appropriale distribution statement be assigned and the report relurned

to DTIC within 5 vyo;king days.

. v 4Iil
4. Approved dislribx‘;,lion slalemenls are
questions regarding these stalements, call DTIC

listed on the reverse of this lelter. {f you have any
s Cataloging Branch, (703) 274-6837.

FOR THE ADMINISTRATOR:

GOPALAKRISHNAN NAIR

1 Encl
Chiel, Calaloging Branch

FL-171
Jul 93

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; .
(Indicale Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED

TO (Indicate Controlling DoD Office Below).

DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(Indicale Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED

TO (Indicate Conlrolling DoD Olfice Below).

DISTRIBUTION STATEMENT D: I

1t
DISTRIBUTION AUTHORIZED TO DOD AND U.S. DOD CONTRACTORS ONLY; (Indicale Reason
and Dale Below). OTHER REQUESTS SHALL BE REFERRED TO (Indicale Conlrolling DoD Office Below).

DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DOD COMPONENTS ONLY; (lhdicate Reason and Dale Below).
OTHER REQUESTS SHALL BE REFERRED TO (Indicale Controlling DoD Office Below).

DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicale Controlling DoD Office and Dale
Below) or HIGHER DOD AUTHORITY.

DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS
OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE
WITH DOD DIRECTIVE 5230.25 WITHHOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC

DISCLOSURE, 6 Nov 1984 (Indicale dale of delerminalion). CONTROLLING DOD OFFICE IS (Indicate
Conlrolling DoD Olffice). ;

The cited documents has'been reviewed by competent aulhorily and the followlng distribution stalement is
hereby authorized.

ﬁ/ OFFICE oF NAVAL RESEARCH

(Statement) SOFI??PQ)RATE FROGRAMS DivisioN (Conlrolling DoD Olffice Name)
R 253

\::3\'

800 NORTYH QUINCY STREET
ARLIN(}]’ON, VA 22217 - 5660

(Conltrolling DoD Olffice Address,
DEBR Y T. HuglES ey City, State, Zip)

)
%/ % LSP Y DIRECTOR | g
_ SRS TE PROGRAMS e 7 SEP s
it JTSF RAMS OFFICR e

[(Si‘d(r/\alure éf?f'yp%’Name) (Assigning Ollice) (Date Stalement Assigned)

(Reason

